Internet Traffic Identification using Machine Learning
نویسندگان
چکیده
We apply an unsupervised machine learning approach for Internet traffic identification and compare the results with that of a previously applied supervised machine learning approach. Our unsupervised approach uses an Expectation Maximization (EM) based clustering algorithm and the supervised approach uses the Naı̈ve Bayes classifier. We find the unsupervised clustering technique has an accuracy up to 91% and outperform the supervised technique by up to 9%. We also find that the unsupervised technique can be used to discover traffic from previously unknown applications and has the potential to become an excellent tool for exploring Internet traffic.
منابع مشابه
Behavioral Analysis of Traffic Flow for an Effective Network Traffic Identification
Fast and accurate network traffic identification is becoming essential for network management, high quality of service control and early detection of network traffic abnormalities. Techniques based on statistical features of packet flows have recently become popular for network classification due to the limitations of traditional port and payload based methods. In this paper, we propose a metho...
متن کاملEmpirical Analysis of Application-Level Traffic Classification Using Supervised Machine Learning
Accurate application traffic classification and identification are important for network monitoring and analysis. The accuracy of traditional Internet application traffic classification approaches is rapidly decreasing due to the diversity of today’s Internet application traffic, such as ephemeral port allocation, proprietary protocol, and traffic encryption. This paper presents an empirical ev...
متن کاملT.T.T.Nguyen, G.Armitage, A Survey of Techniques for Internet Traffic Classification using Machine Learning A Survey of Techniques for Internet Traffic Classification using Machine Learning
The research community has begun looking for IP traffic classification techniques that do not rely on ‘well known’ TCP or UDP port numbers, or interpreting the contents of packet payloads. New work is emerging on the use of statistical traffic characteristics to assist in the identification and classification process. This survey paper looks at emerging research into the application of Machine ...
متن کاملRealtime Encrypted Traffic Identification using Machine Learning
Accurate network traffic identification plays important roles in many areas such as traffic engineering, QoS and intrusion detection etc. The emergence of many new encrypted applications which use dynamic port numbers and masquerading techniques causes the most challenging problem in network traffic identification field. One of the challenging issues for existing traffic identification methods ...
متن کاملA statistical approach to classify Skype traffic
Abstract- Skype is one of the most powerful and high-quality chat tools that allows its users to use of many services such as: transferring audio, sending messages, video conferencing and audio for free. Skype traffic has a lot of Internet traffic. Hence, Internet service providers need to identify traffic to do the quality of service and network management. On the other hand, Skype developers ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006